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SHEET TENSILE PROPERTIES OF TIVANIUM ALLOYS
AS AFFECTED BY TEXTURE

ABSTRACT

A study was carried out on the effect of specimen orientation on the
sheet tensile properties of several titanium alloys. For these alloys, chem-
ical analysis, microstructure, X-ray pole figures, and sheet tensile
properties were determined at 10-degree increments from the roiling to the
transverse direction. In addition to the conventional yield strength, ten-
sile strength, and elongation values, strain gages were used to determine
Young's modulus and Poisson's ratio. A study of plastic anisotropy was alse
made.

It is shown that several types of textures exist in these alloys and the
characteristics of the mechanical properties are anisotropic and related to
the texture type. A simple approximation of the anisotropic behavior pat-
terns can be understocd by relating these patterns to single-crystal
properties.
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INTRODUCTION

There has been a growing interest in the possibility of employing the
control of texture for the improvement of the strength of certain materials.
The term “texture hardening", which was first employed by Backofen and his
co-workers, certainly has this connotation, and the work in this field has
that objective.!=® Thexe are now several investigators attempting to utilize
the suggestions of Hill’ for structural improvements of components which are
subjected to multiuxial stresses, particularly pressure vessels.® Although
most of the interest for the strrctural use of anisotropic materials has been
along these lines, this is not necessarily the only possibility, for it can
be readily demonstrated that large variations in strength can occur even in
uniaxial tension tests.® This large difference in uniaxial tensile strengths
is particularly prevalent in certain hexagonal close-packed metals which have
strong preferred orientations. There is no doubt that as more knowledge of
these anisotropic plastic flow and fracture properties develop the industrial
exploitation of these properties will grow.

Of the investigations carried on in this field, only relatively few have
reported the textures of the material employed. Those which have determined
textures have been somewhat limited in scope. Most of the prior work for
titanium has been confined to commercially pure or the all-alpha type alloys,
probably due to the fact that the alpha alloys seem to develop the textures

in sheet material which zre the most favorable for utilization of the texture
hardening.

This is somewhat surprising for the all-alpha alloys are generally
weaker and require considerable improvements by texture strengthening to be
equivalent to a good heat-treatable alpha-beta alloy. Thus, it seems that the
lack of information about textures, or the control thereof, in the alpha-beta
alloys of titanium has inhibited this utilization in this field. This exper-
imental investigation is the second part of a program for the study of the
interrelationship of texture and tensile properties of titanium sheet mate-
rials, The first part was carried out on a commercially pure titanium,l0
This part is centéred around the alloys of titanium.

TEST PROCEDURE
Chemical Analysis

The materials tested in this investigation were alloys of titanium, four
sheets of Ti-6A1-4V, four sheets of Ti-16V-2.5Al, two sheets of Ti-8Mn
(RC130A), two shects of Ti-6A1-0V-28n, two bheet< of Ti-4Ai-3{o-1V, and one
sheet each of Ti-8A1-1Mo-1V and Ti-4Al-4Mn (RC130B). These sheets represent
materials of both moderately old and fairly recent production. They also
encompass & range of thicknesses from 0.022 to C.130 inch. Chemical analysis

was performed for the major alloying elements and the results are given in
Table I,

i — e




Table 1.

CHEMICAL ANALYSIS

- =

- mm..—-—w.‘rwﬂ.mm-._.’,

Thickness Element (weight percent)
, Alloy Heat (in.) V | Al { Mn | Mo | Sn
’ 6A1-4V M2803 0.038 | 3.69{5.80
M2803 0.074 | 3.74|5.90
M7199 0.060 | 3.94|5.95
B22075 0.129 | 4.045.96
16V-2,5A1 | B22117 0.046 |15.14]2.60
B24990 0.041 |15.35(2.58
X M23346 0.070 |15.57|2.56
E T22154 0.066 |15.59[2.63
[
| RC130A 3442 0.062 3.64
‘ A5221-16| 0.122 7.95
6A1-6V-25n| S 0.115 | 5.43(5.39 2.22
§ H 0.115 | 5.06!5.56 2.40
. 4A1-3Mo-1V|X70006 | 0.060 | 1.05|3.64 2.86
g M8773 0.022 | 0.97(3.33 2,99
; 8A1-1Mo-1V|V1848 0.130 | 1.01|7.78 0.98
] RC-130B  |B3263-Bl| 0.053 4.29 3.84
I ‘ i
{ Microstructure

The microstructures were determined and are shown in Figure 1 at 1000X
magnification. The etchant utilized was 30 cc glycine, 10 cc nitric acid,
and 10 cc hydrofluoric acid. The microstructure of three of the Ti-6A1-4V
alloys (Figure la, b, and c) are equiaxed alpha with beta in the zlpha grain
boundaries indicative 6f as-received structure annealéd in the alpha-beta
field, The fourth heat of Ti-6A1-4V, B22075, is acicular alpha (transformed
beta) with no evidence of retained beta or primary alpha (Figure 147j.

|

]

L The metastable aipha-beta alioy Ti-16V-2,5A1 structures are shown in

! Figures le through h., Heats B22117 (e) and M23346 (g) are in the as-received
le annealed or solution-treated condition, which is essentially the same; heat
T22154 (h) is in the heat-treated condition. Heats T22154 (h) and B24990 (f)

have a coarse grain which is an indication that these sheets were heated into
the all-beta field,

The alpha-beta alloy Ti-84n (RC130A), heats 3442 (i) and A5221-16 (j)

: are in the as-received annealed condition with heat 2442 bezng somewhat
larger in grain size, The structure is essentially alpha prime in .a beta

i matrix,

¢ Both heats of the alpha-beta alloy Ti-6Al1-6V-2Sn are in the as-received
‘ condition (Figures 1k and 1). The structure is primarily an alpha smatrix
. with retazined beta outlining alpha grains.
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Structures for the alpha-beta Ti-4A1-3Mo-1V are shown in Figures 1m and n.
Heat X70006 structure is apparently indicative of an as-received annealed
condition, retained beta in an alpha prime matrix. The microstructure for

heat M8173 shows a solution-treated structure of a beta matrix with alpha
prime.

The two remaining alpha-beta alloys, Ti-8Al-1Mo-1V and Ti-4Al-4Mn

(RC130B), appear to be in the as-received mill-annealed conditien (Figures
lo and p).

Texture

X-ray diffraction determination of the preferred orientation was carried
out utilizing the reflection method described by Lopata and Kulal! and the
results are shown in Figure 2, Because of time and expense, only the pole
figure for the basal plane was determined. In the cases where there was a
large amount of beta, a pole figure for this phase was determined. Since
most of the properties for hexagonal met.als are symmetrical around the basal
pole, it was felt that the basal pole figure wonld suffice,

The results shown in the figures confirm the general pattern as reported
in the survey of Dillamore and Roberts.!? One family of titanium textures, the
alpha-deformation type, can be described as having a high intensity of basal
poles in the sheet normal-transverse direction plane, and these poles are
tilted at various angles toward the transverse directions. Because more work
is needed, it cannot be definitely established that Figures 2a, b, ¢, g, h,

i, j, m, and p are of this type, A characteristic of this type of texture is
one which arises from the beta phase or appears in the alpha phase as a
result of the transformation of béta té alpha on cooling through the trans-
formation relationships of (0001), || {110} ; and uzop || <111),.

It has been found that the beta phase shows a (100) [011] type of tex-
ture!2 which is the type for the beta phase shown in Figure 2e and possibly
2f. The alpha textures are inherited from the beta (110) ([011] type and are a

result of the above transformation orientations as illustrated in Figures 2d,
k, 1, m, and 0.

This is only a brief description of the textures found and considerable
more work is needed to completely describe the textures present. It seems
that additional studies are needed, particularly on the alpha-beta alloys
because of the complex nature of the working, which is done partly in the
beta, partly in the aulpha-beta, and finally in the alpha. Transformation
occurs upon heating, annealing, -or heat treaiment, and the texture which
develops as a result of all these events is imperfact.

Mechanical Testing

A series of sheet tensile specimens were machined at 10-degree increments
from the rolling to the transverse direction. The specimen orientation is
defined by the angle a that the specimen axis makes with the rolling direc-
tion as shown in Figure 3. In some cases, the specimens were cut for angles
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b. Heat 2803,
0.075" thick .
E,
1
L
1
' IR e e ol )
! - "5.:;5‘ .;;’\“‘.pa*.g }
c. Heat M7199 * _\;.:}: ), Al (
d. Heat B22075 é
1 ,i
s
K
Ti-16V-2,5A1 . ]
e. Heat B22117
; f. Heat B24990
r{"_:.‘: 'Eh\".?{. y ;
g. Heat M23346
h. Heat T22'54
R et S RS N
{.{::.“ s
G
{é’;‘ “ ~
;r"‘:,‘ . '.“’: !
,g"-’ﬁ:,, ?":{.333.5 e85 o AN i = 5

Figure la-h, MICROSTRUCTURES OF VARIOUS TITANIUM ALLOYS. Mag. 1000X .
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Ti-6A1-4V oL P
a. Heat M2803
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Figure 2a-h. POLE FIGURES OF VARIOUS TITANIUM ALLOYS
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Figure 3.

SCHEMATIC .OF TENSILE

SPECIMEN ORIENTATIONS
.engineering tensile properties were obtained with a snap-on extensometer,
All specimens were tested at room temperature on a 120,000-pound hydraulic
universal testing machine at a strain rate of 0.005 inch per inch per minute,

A schematic of the test setup is shown in Figure 5,

up to 180 degrees. The longitudinal
specimens would then be marked 0 or
180 degrees and the transverse 90
degrees.

The test procedure and setup is
essentially the same as that emgloyed
in previous investigations.?’
geometry of the sheet tensile bar is

| shown in Figure 4.

In order to cbtain precision

-strain measurements for the determi-
:} nation of Young's modulus and Poisson's:

ratio (both plastic and elastic), 90-
degree, two-element, post yield
rosette strain gages were utilized.
The signal from the strain gages
along with the load signal was fed
into an X-Y-Y’ recorder. This proce-
dure produced two curves: a load.

‘versus longitudinal strain and a

longitudinal strain versus transverse
strain. These curves were used to
determine the various special proper-
ties such as Young's modulus and
Poisson's ratio, The conventional

More details on the

method of determining various mechanical properties are available in a
previpus report.?

O Tension Test Recorder
f—te— _ g
——_‘3(,-0.80‘ Dia y .3, _ o s o
--—£ + l—— o.sgzo‘ — i ;; / &
\i/ ! 24 ! I z C X-Y-Y' Recorder |
70" a e
SPECIMEN (:) s
; 3
Figure 4. TEST SPECIMEN GEOMETRY mr —:
Figure 5. SCHEMATIC QF TESTING
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DISCUSSION OF RESULTS
Young's. Modulus

An understanding of the effect of texture upon Young's modulus is facil-
itated by a knowledge of single-crystal elastic properties. Much of this has
been recently reviewed by Hearman.l!3 Research has shown that for hexagonal
single crystals, Young's modulus is sensitive to the angle that the applied
stress makes with the basal pole and is symmetrical about this pole. Sonic
measurements of Young's modulus in single crystals of titanium!“s15 have
shown that Young's modulus is the lowest (14.5 x 10%) when the stress axis
lies in the basal plane and the highest (21.0 x 106) when the stress axis
coincides with the basal pole. It can be seen that a variation of about 50
percent in modulus is observed in titanium single crystals. It would be
expected that, for certain strange preferred orientations, a variation in
Young's modulus will appear in polycrystalline titanium sheet. This discus-
sion applies to the alpha or hexagonal phase but a similar one could be
presented for the beta or body-centered cubic phase,

As can be scen from the above and from the three types of textures found
in the alloys studied, it is to be expected that widely different behavior
patterns will be evident. The experimental verification of this is illus-
trated in Figure 6. The variation of Young's modulus for the sheets with
alpha-deformation type texture (6a, b, ¢, g, h, i, j, m, and p) shows a pat-
tern which is similar to that observed in previous invcstigation.lo Briefly,
for these textures it was found that the lowest Young's modulus should
appear in the rolling direction since the greatest number of grains would
have the stress axis closest to the basal plane. -If the texture is random
or if the basal planes are parallel to the sheet surface, it wcuid be ex-
pected that no variation in Young's modulus will occur with changing specimen
orientation. On the other hand, if # strong texture exists, ths variation in
Young's modulus will depend upon how the basal poles are oriented. The sheet.
having the greatest tilt of the basal pole toward the transverse -direction
will have the greatest variation of Young's modulus in the transverse direc-
tion. Three very striking examples of this are shown in Figures 6a, b, and p.
The presence of beta in the alpha matrix will have a tendency to modify this
behavior pattern which results in raising Young's modulus in the rolling
direction and lowering it around 30 to 40 degrees a.

Both of the other two types of textures produce similar patterns of
Young's modulus as a function of specimen orientation. An extreme example
is shown for the beta phase (body-centered cubic) in Figure 6e. Referring
back to the pole figure (Figure 2-1), it can be seen that this is a very
strong texture of the (100) <011> type. Thus, the high for Young's meodulus in
the rolling and transverse direction with a low at about 45 degrees is to be
expected for body-centered cubic metals. The low in Young's modulus is
usually found in the {100) direction with an intermediate value in the (110D
direction and a high in the (111> direction. The alpha texture which develops
from the transformation of this beta texture produces a similar pattern of
Young's modulus with specimen orientation, primarily because the transforma-
tion relationships give rise to basal poles in the roliing direction. These
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basal poles in the rolling direction cause Young's modulus to be high as when
a equals 0 degrees as shown in Figures 6k and 1.

Poisson's Ratio

The transverse elastic contraction strain can also be shown to be anisot-
ropic in single crystals.!3 Thus, the ratio ¢f longitudinal extension to the
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transverse c¢smtraction strain (Poisson's ratio) should be anisotropic.

has been previously shown? that in titanium and its alloys Poisson's ratio

can vary from about 0.20 to 0.44. It is then to be expected that those

sheets exhibiting strangely developed textures of certain orientations will

have significant variations of Poisson's ratio.

gation are plotted in Figure 7.
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Figure 7a-h. VARIATION OF PGISSON'S RATIO IN THE ELASTIC
ZONE (ug) WITH SPECIMEN ORIENTATION (a)
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tain behavior patterns evolve.

If the curves are placed in the category of general texture type, cer-
For the alpha-deformation type texture, the

variation of Poisson's ratio depends upon the tilt of the basal pole toward

the  transverse direction.

khen the basal poles are near the sheet normal,

Poisson's rativ is high and does not vary to any large degree with specimen

orientation as shown in Figure 7m.

As the basal poles tilt toward the trans-

verse direction, the value of Poisson's ratio decreases at all specimen ori-

entations and to a larger degree near the rolling direction.

Therefore, in

this case, the lowest value of Poisson's ratio is found in the rolling direc-
tion as illustrated in Figure 7a.
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The beta-phase texture and the alpha texture, which is a result of the

o R

Ja s
o o

i

transformation- of the beta texture, have similar patterns of Poisson's ratio
with specimen orientation. The curve in Figure 7e illustrates an extreme
case of this. The value of Poisson's ratio is low in the rolling and trans-
verse directions with a high at about 45 degrees.

Yield Strength

It is also demonstrated that the yield strength of single crystals is a
function of orientation. It appears that the yield strength should also

PR

e L

T o ——"

e e

~N)
Ti-6R1-4v 2. Heat M2803 b. Heat M2803
120 0.033" thick 140 0.070" thick
110 130
100 120,
ﬂ° | A I I S B
~ 140 d. Heat B22075 L
‘*
X
% 130 "
&
£
g
£ 120 I N SR T S B
Ti-16V-2.580 2 100 . Heat 24990 i
C
s >
90 —
80 PO~
" S e. Heat B22117
7 VN A N N O B | 60 1 1 1 1 111
S - : ~
15 g. Heat M23346 L 180 h. Heat T22154
1o o*”f(¥,17q_ P |
g
130 160~
S S Y T T T TN Y " (Y Y O N OO O

vary with specimen orientation depending upon texture type.

Fer the alpha-

deformation type, the variation will be small when the basal poles are near

the sheet normal and large when they are near the transverse direction.

example of this large variation is shown in Figures 8a and p.

Figure 8a<h.
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Tensile Strength

The variation in tensile strength with specimen orientation depends upon
two things, first, the yield strength, and second, the rate of strain harden-
ing. Both of these properties can vary with specimen orientation in a com-
plicated way so that a complicated pattexrn can easily develop as shown in

Figure 9.
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An analysis of these curves reveals that except for the case where the
basal poles are néar the sheet normal (Figures 9m and n), which we cannot
explain, the curves follow two types; an alpha and a beta type. The alpha-
phase type included both the alpha deformation texture and the alpha-
tranformed-beta deformation type. The primary feature of these curves is a
low tensile strength at specimen orientation around 40 to 50 degrees, .a high
in the rolling direction, and scmetimes higher value in the transverse
diraction,

The beta-phase type (Figures 9e and f) shows a high at 40 to 50 degrees
and a low in the rolling and transverse directions.

Plastic Poisson's Ratio

Of all the mechanical properties, the ratio of plastic strains is prob-
ably more sensitive to texture than the others studied. This is clearly
evident from the large variations shown in Figure 10, As pointed out previ-
ously,? the valves of Poisson's plastic strain ratios are related through
constancy of volume to the more commonly used value of the ratio of lateral
contraction strains which is called R. It is difficult to describe the pat-
tern displayed by this data. It appears, however, that the lowest value is

in the rolling direction and, as the specimen orientation moves to the trans-

verse direction, the value increases to a maximum at 40 to 50 degrees and
then decreases. ‘The value for the transverse test, in general, is somewhat
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higher than that for the rolling direction. It seems the alpha-deformation
type texture produces the largest spread in values when the basal poles are
tilted furthest toward the transverse direction.

tlongation

The percent clongation was not determined on all sheets and the informa-
tion available is illustrated in Figure 11, It appears that relatively
little can be said about the variation in percent elongation and its conitec-
tion with texture. In some cases it seems there is a mild tendency for the
elongation to peak at an angle of about 45 degrees.

SUMMARY

From this extensive program and previous work, it is now clearly estab-
lished that titanium and titanium alloys can be anisotropic with respect to
their uniaxial tensile properties. The most sensitive measure of this
anisotropy appears to be the strain although the other mechanical properties
such as Young's modulus, yield strength, and tensile strength are also influ-
enced. This study has shown the general behavior patterns observed in com-
mercially obtainable textures of several types. The patterns of behavior
observed can be described in a qualitative way and further work is needed to
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more fully develop a quantitative understanding of the interrclationshivs
between textured and mechanical properties of sheet materials,

It is hoped that the data presented here will serve to stimulate further
inquiries into textured materials and encourage utilization in special struc-
tural applications where the improvements obtainable are at a premium;

urther effort needs to be expended into discovering heat treatment and
deformat1ons necessary to obtain desirable textures. Once these textures
can be controlled and are understood, it is possible that ‘tremendous poten-
tial for improved mechanical properties will be realized.
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